Question Number	Answer		Mark
1(a)(i)	Outward spiral from centre in either direction, minimum of two complete loops	(1)	1
1(a)(ii)	Direction consistent with diagram:		
	Clockwise path, field out of page		
	Anticlockwise path, field into page	(1)	1
1(a)(iii)	Electric field/p.d. between dees causes (resultant) force/acceleration	(1)	
	Proton makes half a revolution in half a cycle of the a.c.		
	Or facing dee (always) negative when proton reaches gap.		
	Or whenever the proton gets to a gap, the p.d. has reversed	(1)	
	k.e./speed (only)increases each time the proton crosses the gap		
	Or work done by the field in the gap increases the k.e.	(1)	3
1(a)(iv)	$Bev=mv^2/r$ Or $r=p/Be$	(1)	
	$v = 2\pi r/T$	(1)	
	$T=1/f$ (seeing $f = v/(2\pi r)$ scores MP2 & 3)	(1)	
	$\begin{array}{l} \mathbf{Or} \\ Bev = mr\omega^2 \end{array}$		
	$Bev = mr\omega$ $v = r\omega$	(1)	
	$\omega = 2\pi f$ (seeing $v/r = 2\pi f$ scores MP2 & 3)	(1) (1)	3
		(1)	0
1(a)(v)	Use of $B = 2\pi fm/e$ with mass of proton	(1)	_
	$f = 1.8 \times 10^4 \text{ Hz}$	(1)	2
	Example of calculation		
	$f = eB/2\pi m$		
1(b)	$\frac{J - 1.6 \times 10^{-112}}{\text{At } \mathbf{X}}$		
1(0)	the idea that 2 particles are produced	(1)	
	One is uncharged/neutral so no track	(1)	
	charged particle has same charge as incident particle to conserve charge Or path of (new) charged particle changes to conserve momentum	(1)	
	or path of (new) enarged particle changes to conserve momentum	(1)	
	At Y		
	Neutral particle decays into two charged particles.	(1)	
	Tracks curve in opposite directions as particles oppositely charged.		
	Or particles have (equal and) opposite charge to conserve charge		
	Or particles have equal (magnitude of) momenta since their (radius of)	(4)	-
	curvature is the same.	(1)	5
	Total for question		15

Question Number	Answer		Mark
2	(QWC- Work must be clear and organised in a logical manner using technical wording where appropriate		
	Max 4 <u>Uniform</u> electric field (between plates) Force due to E or idea of attraction/repulsion (Ball has an) <u>acceleration</u> (not an increasing velocity) Which is constant/uniform (can be with reference to increasing velocity) Vertical line/ + and – values shows change in direction Inelastic collision/less energy after impact	 (1) (1) (1) (1) (1) (1) 	4
	Total for question		4

Question Number	Answer	Mark
3	Use of $W=mg$ Use of $F=BIL$ B = 0.04 T	(1) (1) (1)
	Total for question	3

Question Number	Answer	Mark
4(a)(i)	measured thickness of lead 4-5 mm (1) measured radius 32 - 38 mm (1) Value between 38 - 57 mm (1) Eg actual radius = 35 mm x 6 mm/4.5 mm	3
4(a)(ii)	Use of $p = Bqr$ [any two values sub] (1) Answer range 9.1 x 10 ⁻²¹ - 1.4 x 10 ⁻²⁰ N s or kg m s ⁻¹ [allow ecf](1)	2
4(b)	Track gets more curved above lead / r smaller above lead (1) Must be slowing down / less momentum / loses energy (1) Up [dependent on either answer above] (1)	3
4(c)	Into page (1) [ecf out of page if down in b]	1
4(d)(i)	Division by 9.11 x 10 ⁻³¹ kg (1) Answer range 1.0 - 1.6 x 10 ¹⁰ m s ⁻¹ (1)	2
4(d)(ii)	greater than speed of light (1) (impossible) so mass must have increased (1)	2
	Total for question	13

Question Number	Answer		Mark
5(a)	The <u>magnetic</u> field (must be) at right angles to the current	(1)	
5(b)	All three units for force, length and current clearly identified (The unit of force is kg m s ^{-2} , the unit of current is A, the unit of length is m)	(1)	
	$T = kg A^{-1} s^{-2}$	(1)	2
5(c)	Use of $\rho = m/V$ Use of $mg = BIl$ B = 0.53 (T) (no u.e. as given in question for part (b))	(1) (1) (1)	3
	Example of calculation $m = 2.7 \times 10^{3} \text{ kg m}^{-3} \times 10 \times 10^{-3} \text{ m} \times 10 \times 10^{-3} \text{ m} \times l$ $m = 0.27 \times l$ $B = (0.27 \times l \times 9.81 \text{ m s}^{-2})/(5 \text{ A} \times l)$ B = 0.53 T		
5(d)	(Magnetic field is) into paper/page	(1)	
	Total for question		7